1,404 research outputs found

    Reduction of temperature rise in high-speed photography

    Get PDF
    Information is provided on filtration with glass and infrared absorbing and reflecting filters. Glass and infrared filtration is a simple and effective method to reduce the radiation heat transfer associated with continuous high intensity tungsten lamps. The results of a filtration experiment are explained. The figures provide starting points for quantifying the effectiveness of various filters and associated light intensities. The combination of a spectrally selective reflector (hot or cold mirror) based on multilayer thin film principles and heat absorbing or infrared opaque glass results in the maximum reduction in temperature rise with a minimum of incident light loss. Use is recommended of a voltage regulator to further control temperature rise and incident light values

    DNA Authentication of St John’s Wort (Hypericum perforatum L.) Commercial Products Targeting the ITS Region

    Get PDF
    open access articleThere is considerable potential for the use of DNA barcoding methods to authenticate raw medicinal plant materials, but their application to testing commercial products has been controversial. A simple PCR test targeting species-specific sequences within the nuclear ribosomal internal transcribed spacer (ITS) region was adapted to screen commercial products for the presence of Hypericum perforatum L. material. DNA differing widely in amount and extent of fragmentation was detected in a number of product types. Two assays were designed to further analyse this DNA using a curated database of selected Hypericum ITS sequences: A qPCR assay based on a species-specific primer pair spanning the ITS1 and ITS2 regions, using synthetic DNA reference standards for DNA quantitation and a Next Generation Sequencing (NGS) assay separately targeting the ITS1 and ITS2 regions. The ability of the assays to detect H. perforatum DNA sequences in processed medicines was investigated. Out of twenty different matrices tested, both assays detected H. perforatum DNA in five samples with more than 103 ITS copies µL−1 DNA extract, whilst the qPCR assay was also able to detect lower levels of DNA in two further samples. The NGS assay confirmed that H. perforatum was the major species in all five positive samples, though trace contaminants were also detected

    PlantID – DNA-based identification of multiple medicinal plants in complex mixtures

    Get PDF
    Background An efficient method for the identification of medicinal plant products is now a priority as the global demand increases. This study aims to develop a DNA-based method for the identification and authentication of plant species that can be implemented in the industry to aid compliance with regulations, based upon the economically important Hypericum perforatum L. (St John’s Wort or Guan ye Lian Qiao). Methods The ITS regions of several Hypericum species were analysed to identify the most divergent regions and PCR primers were designed to anneal specifically to these regions in the different Hypericum species. Candidate primers were selected such that the amplicon produced by each species-specific reaction differed in size. The use of fluorescently labelled primers enabled these products to be resolved by capillary electrophoresis. Results Four closely related Hypericum species were detected simultaneously and independently in one reaction. Each species could be identified individually and in any combination. The introduction of three more closely related species to the test had no effect on the results. Highly processed commercial plant material was identified, despite the potential complications of DNA degradation in such samples. Conclusion This technique can detect the presence of an expected plant material and adulterant materials in one reaction. The method could be simply applied to other medicinal plants and their problem adulterants

    Applied Barcoding: The Practicalities of DNA Testing for Herbals

    Get PDF
    open access articleDNA barcoding is a widely accepted technique for the identification of plant materials, and its application to the authentication of commercial medicinal plants has attracted significant attention. The incorporation ofDNA-based technologies into the quality testing protocols of international pharmacopoeias represents a step-change in status, requiring the establishment of standardized, reliable and reproducible methods. The process by which this can be achieved for any herbal medicine is described, using Hypericum perforatum L. (St John’sWort) and potential adulterant Hypericum species as a case study. A range of practical issues are considered including quality control of DNA sequences from public repositories and the construction of individual curated databases, choice of DNA barcode region(s) and the identification of informative polymorphic nucleotide sequences. A decision tree informs the structure of the manuscript and provides a template to guide the development of future DNA barcode tests for herbals

    A Note on the Picard-Fuchs Equations for N=2 Seiberg-Witten Theories

    Get PDF
    A concise presentation of the PF equations for N=2 Seiberg-Witten theories for the classical groups of rank r with N_f massless hypermultiplets in the fundamental representation is provided. For N_f=0, all r PF equations can be given in a generic form. For certain cases with N_f\neq zero, not all equations are generic. However, in all cases there are at least r-2 generic PF equations. For these cases the classical part of the equations is generic, while the quantum part can be formulated using a method described in a previous paper by the authors, which is well suited to symbolic computer calculations.Comment: 25 pages, Latex; some new references adde

    Real time emulation environment for digital control development

    Get PDF
    PhD ThesisSimulation is a powerful tool for developing electric drive systems. Simulations allow the designer to experiment with control algorithms and hardware systems in a safe environment. To this end simulation is becoming increasingly popular. On'-line simulation does have its limitations in that the controller developed during the simulation period has eventually to be transferred to the target processor which will operate in the actual drive system. If, however, a real-time simulation environment could be realised, then the actual controller running in the actual target processor could be included in the simulation. Therefore no translation of code would be required once the controller had been developed and tested within the simulation. This would obviously lead to a reduction in development time and eliminate any possibility of introducing errors due to the translation between the simulated and actual controllers. This thesis describes the development of such a system using a multiple digital signal processing environment. The real-time simulated drive is operated in parallel with an experimental drive to allow a direct comparison between the two. The ability of the multiple processing system to operate in real-time has allowed the whole concept of simulation to be taken a stage further by the development of a real-time power level simulator. This simulator is capable of emulating a machine and load in real-time with real level of voltage and current. It is designed to replace a real machine during the development and testing stages of drive manufacture. This Virtual Machine is a controllable source/sink which is driven by the real-time simulation, and because of this the Virtual Machine takes on the characteristics of any choice of model within the real-time simulation. Moreover, because of its ability to handle bi-directional power flow, the Virtual machine can be programmed to emulate motors or generators. The Virtual Machine also includes the emulation of loads, thus making it extremely flexible and of interest to applications such as machine tools, electric vehicles, and wind generators, to name but a few.EPSR

    The Cultural and Commercial Value of Tulsi (Ocimum tenuiflorum L.): Multidisciplinary Approaches Focusing on Species Authentication

    Get PDF
    Tulsi (Holy basil, Ocimum tenuiflorum L., Lamiaceae), native to Asia, has become globalised as the cultural, cosmetic, and medicinal uses of the herb have been popularised. DNA barcoding, a molecular technique used to identify species based on short regions of DNA, can discriminate between different species and identify contaminants and adulterants. This study aimed to explore the values associated with Tulsi in the United Kingdom (UK) and authenticate samples using DNA barcoding. A mixed methods approach was used, incorporating social research (i.e., structured interviews) and DNA barcoding of Ocimum samples using the ITS and trnH-psbA barcode regions. Interviews revealed the cultural significance of Tulsi: including origins, knowledge exchange, religious connotations, and medicinal uses. With migration, sharing of plants and seeds has been seen as Tulsi plants are widely grown in South Asian (SA) households across the UK. Vouchered Ocimum specimens (n = 33) were obtained to create reference DNA barcodes which were not available in databases. A potential species substitution of O. gratissimum instead of O. tenuiflorum amongst SA participants was uncovered. Commercial samples (n = 47) were difficult to authenticate, potentially due to DNA degradation during manufacturing processes. This study highlights the cultural significance of Tulsi, despite a potential species substitution, the plant holds a prestigious place amongst SA families in the UK. DNA barcoding was a reliable way to authenticate Ocimum species

    An improved Diagnostic PCR Assay for identification of Cryptic Heterozygosity for CGG Triplet Repeat Alleles in the Fragile X Gene (FMR1)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fragile X syndrome (OMIM #300624) is the most common, recognised, heritable cause of mental retardation. Widespread testing is warranted by the relatively high frequency of the disorder, the benefits of early detection and the identification of related carriers whose offspring are at a 1 in 2 risk of inheriting the expanded pathogenic mutation. However, cost-effective screening of mentally retarded individuals has been impeded by the lack of a single, simple laboratory test. Currently, Fragile X syndrome can be excluded in males and a majority of females using a simple high-throughput PCR test. Due to the limited sensitivity of the PCR test, we find in our diagnostic service that approximately 40% of females appear homozygous and a labour intensive and expensive Southern blot test is required to distinguish these from females carrying one normal allele and an expanded allele.</p> <p>Results</p> <p>We describe an improved PCR test which displays a high level of precision allowing alleles differing by a single triplet to be resolved. Using the new assay, we detected 46/83 (53%) cryptic heterozygotes previously labelled as homozygotes. The assay also extended the range of repeats amplifiable, up to 170 CGG repeats in males and 130 CGG repeats in females. Combined with the high precision, the assay also improves discrimination of normal (CGG repeats < 45) from grey zone (45 < CGG repeats < 54) alleles and grey zone alleles from small premutations (55 < CGG repeats < 100).</p> <p>Conclusion</p> <p>Use of this PCR test provides significantly improved precision and amplification of longer alleles. The number of follow-up Southern blot tests required is reduced (up to 50%) with consequent improvement in turnaround time and cost.</p

    Estimation of Length or Height in Infants and Young Children Using Ulnar and Lower Leg Length with Dual-energy X-ray Absorptiometry Validation

    Get PDF
    AIM: We compared the accuracy and reproducibility of using ulnar and lower leg length measurements to predict length and height in infants and children aged 0 to 6 years. METHOD: Length/height and ulnar and lower leg length were measured in 352 healthy preterm and term-born children (167 males, 185 females) (Mean age= 2.6±1.6 years). Ulna length was measured as the distance between the proximal olecranon process and the distal styloid process of the ulna. Tibia length was measured as the distance from the proximal aspect of the medial condyle and the most distal aspect of the medial malleolus of the tibia using a segmometer. Length measurements were taken using an infant length board in children less than 24 months of age, whereas a portable stadiometer was used to measure height in older children. Equations were developed using ulnar and lower leg length and age. Intra- and inter-examiner variability (n=167) was calculated, and dual-energy X-ray absorptiometry scans (n=126) were used to determine accuracy of limb lengths. RESULTS: Ulnar and lower leg length explained over 95% of the variability in length/height in term infants and children, but less in preterm infants (R(2) =0.80-0.87). In preterm infants, the limits of agreement (LOA) for males were -2.44 to 2.44cm and -2.88 to 2.88cm for the ulna and lower leg respectively, whereas the LOA for females were -1.90 to 1.90cm and -1.87 to 1.87cm respectively. In older children, the LOA for males were -5.53 to 4.48cm and -5.59 to 4.62cm for the ulna and lower leg respectively, whereas the LOA for females were -5.57 to 5.01cm and -6.02 to 5.02cm respectively. Intra- and inter-examiner variability was low for all measurements in both sexes and age groups. INTERPRETATION: Length and height measurements using infant length board or stadiometer are reproducible. Because of the wide limits of agreement, estimation of length and height in children using ulnar and lower leg length is not an acceptable alternative to traditional methods

    Percutaneous repair of an ascending aortic pseudoaneurysm with a septal occluder device

    Get PDF
    • …
    corecore